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Mössbauer spectroscopy

Krzysztof Szymański
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Abstract. Analytical expressions for the intensity tensor in the case of 3/2–1/2 nuclear transitions
are obtained and the properties of the trace, symmetric and antisymmetric parts of the intensity tensor
for a single transition are discussed. It is shown that in the principal axis system of the symmetric
part of the intensity tensor the angular dependence of absorption of the circularly polarized resonant
radiation depends essentially on only one parameter—the maximal degree of circular polarization.
The latter parameter is directly connected with the antisymmetric part of the intensity tensor. It is
shown that the so-called ambiguity problem, including the sign of the hyperfine magnetic field, can
be solved by measuring the antisymmetric part using circularly polarized radiation. Some values
typical in circular polarimetry can be measured in a standard experiment and vice versa. Explicit
expressions for the line intensities of the powdered absorber are given in the general case of mixed
transitions. The symmetry of the shape of the spectra with different signs of the electric field is
explained. An experiment is proposed in which all parameters of the I = 3/2 spin Hamiltonian
can be unambiguously determined.

1. Introduction

Development of EPR and MNR techniques in the 1950s resulted in an interest in the behaviour
of a spin exposed to mixed magnetic and electric interactions [1–7]. A proper solution of the
respective spin Hamiltonian also became needed after discovery of the Mössbauer effect, and
the formulas for the probabilities of observed nuclear transitions under magnetic fields were
given first in [8] and [9]. Then, the transition probabilities and absorption line shape were
treated in a large number of works by perturbation or numerical methods. Examples, which
certainly do not cover all the field, can be found in [10–19]. The parameters of the hyperfine
fields in cases of mixed interactions were measured by Mössbauer spectroscopy, see some
representative examples [20–25], and the results were compared with calculations based on
the spin-3/2 Hamiltonian.

However, in 1966 it was pointed out [20] that the knowledge of nuclear levels resulting
from combined interactions does not lead to a unique solution for all hyperfine parameters.
The arising ambiguity, analysed e.g. in [23] and [25–28], cannot be lifted either by taking into
account line intensities in a single measurement with an unpolarized source, or by changing
the magnitude of the external magnetic field. However, it can be reduced when polarized
radiation is used, see [25]. It is to be noted that the form of the eigenvalues and eigenfunctions
of the I = 3/2 Hamiltonian, necessary for discussion of the 3/2–1/2 transitions observed
in Mössbauer spectroscopy, is quite complicated [20, 29]. The secular equation, which is
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of fourth order, can in principle be solved analytically [29, 30]. Unfortunately, an analytical
expression for the line intensity which was derived in [31] using the superoperator technique
is too complicated for a detailed discussion. Certain activity was also devoted to derivation of
the exact relationships between energy levels [6, 20, 30] or line intensities [23]. Some of them
found wide applications [32].

The intensity tensor formalism, which is specially interesting for us, was introduced
in [33–35] and used intensively [36–43]. In the cited papers, the intensely tensor components
were constructed from the eigenstates of the excited and ground state Hamiltonians. Since
the eigenstates of the 3/2 spin Hamiltonian are described by complicated expressions, the
detailed discussion was performed in extremal cases only: either small magnetic or small
quadrupole interactions. In principle, an analytical form of the intensity tensor can be obtained
from analytical expressions for energies [29] and constructed eigenstates [20, 43] inserted into
formulas for the intensity tensor components. However, results of such a procedure are useless
because of their complexity. We should like to demonstrate that there is an alternative way to
derive convenient expressions for the probabilities.

First we obtain a set of linear equations for the probabilities. Next, the probabilities will be
obtained as functions of hyperfine parameters defining the hyperfine fields and the energies of
the excited states, which define line positions in the spectrum. We will show that all hyperfine
parameters can be measured by means of a monochromatic, circularly polarized Mössbauer
source (MCPMS) [44–46]. Finally, explicit results for line intensities to be expected in some
special experimental arrangements are given and some details are discussed, to the best of our
knowledge, for the first time.

2. The Hamiltonian and the secular equation

The Hamiltonian of the nuclear system with spin Î in the principal axis system (PAS) of the
electric field gradient (EFG) tensor was defined in [5] and [29] as:

HI = −gIµN Î · B +
eQVzz

4I (2I − 1)

(
3Î2
z − Î2 +

η

2
(Î2

+ + Î2
−)

)
(2.1)

where gI is a nuclear g-factor andµN denotes the nuclear magneton. Cartesian components of
the EFG tensor are Vij = −∂2V/∂xi∂xj , where V denotes an electric potential at the nucleus.
Q is the nuclear quadrupole moment and η denotes the so-called asymmetry parameter. The
coordinate system can be chosen so that |Vzz| � |Vyy | � |Vxx | and then η = (Vxx −Vyy)/Vzz.
Let us accept as a basis states |Ie,me〉 and |Ig,mg〉, which are the eigenstates of the Îz,
the z-component of the angular momentum operator in the PAS system of the EFG. The
excited and the ground eigenstates of the Hamiltonian are |eα〉 = ∑

me
eαme |Ie,me〉 and

|gβ〉 = ∑
mg
g
β
mg |Ig,mg〉, respectively. Then, the secular equation of theH 3/2 Hamiltonian is:

λ4 + pλ2 + qλ + r = 0 (2.2)

where

p = −10 − 2R2

(
1 +

η2

3

)
q = −16m · Φ̂ · m (2.3)

r = 1
4 (p + 4)2 − 16m · Φ̂ · m

with R = eQVzz/(2g3/2µNB). The unit vector m, defined by spherical angles θ and ϕ, is
parallel to the direction of the hyperfine magnetic field B. Φ̂ is a tensor proportional to the
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EFG tensor and in its PAS it reads:

Φ̂ = −R
2

[ 1 − η 0 0
0 1 + η 0
0 0 −2

]
(2.4)

The coefficient at the λ3 term in equation (2.2) is zero, because the Hamiltonian H 3/2 is
traceless. An analytic form for λα can be found in [29] and [30]. The values λα are proportional
to the eigenenergies of Eα of the Hamiltonian H 3/2: λα = 2Eα/(g3/2µNB).

3. Intensity tensor formalism

The transition probability between excited |eα〉 and ground |gβ〉 states can be obtained in the
intensity tensor formalism. In the thin absorber approximation, the area under an absorption
line for circular polarization is equal to [41]:

Aαβζ = fst
%π

2

1

2
(Tr Îαβ − γ · Î

(s)
αβ · γ − 2ζGαβ · γ) (3.1)

where t is the effective thickness of the absorber, fs the recoilless fraction of the source and %
the natural width. Index ζ = ±1 described two opposite circular polarizations of the photon.
γ is a unit vector parallel to the direction of the photon. Î is the so-called intensity tensor of the
transition between states α and β, and it is convenient to define its spherical components. Any
vector V = ∑

viei can be expressed in the spherical basis: V = ∑
biu∗

i , where spherical
basis vectors are defined as: u±1 = 2−1(∓ex − iey), u0 = ez. Spherical components of the
intensity tensor are thus constructed as:

I
ij

αβ = V
αβ∗
i V

αβ

j (3.2)

whereV αβM are spherical components of the vector describing nuclear transition from the excited
to the ground state:

V
αβ

M =
√

2L + 1
∑
memg

eα
∗
me
gβmg (−1)Ig−L+me

(
Ig L Ie
mg M −me

)
. (3.3)

The last expression in the parenthesis is Wigner’s 3j symbol.
Further on, we will use Cartesian components of tensors. Î

(s)
αβ is the symmetric part of the

intensity tensor defined as usually:

Î
(s)
αβ = (Îαβ + Î∗

αβ)/2. (3.4)

The real Gαβ vector is constructed from the antisymmetric part of the intensity tensor and its
components are given by:

Gkαβ = εkprI
pr

αβ /2i. (3.5)

The first two terms of equation (3.1) correspond to the measurements with an unpolarized
source. The third term, containing the antisymmetric part of the intensity tensor, relates to
the circular polarization of the radiation, and measurements with two opposite polarizations
can deliver direct information about Gαβ vectors, whose properties are examined in the next
section.

4. Some properties of the intensity tensor of pure transition

We shall drop indicesα andβ in this section because only one pair of indices will be considered.
Let us diagonalize the symmetric part of Î. Note that G is an eigenvector of Î with an eigenvalue
xG = 0, which follows from the construction of Î:

I ijGj = bibj∗εjklbkbl∗/2i = bib · (b × b∗)/2i = 0 (4.1)
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where bi are Cartesian components of the V vector (3.3). The same property (4.1) holds for
the symmetric part Î(s) and is equivalent to the fact that invariant Det Î(s) = 0. To find two
other eigenvalues of Î(s) it is convenient to use another invariant, namely the sum of minors
Cxx + Cyy + Czz, where

Czz =
∣∣∣∣ I (s)xx I (s)xy
I (s)yx I (s)yy

∣∣∣∣ (4.2)

and Cxx , Cyy are defined analogously. The sum of minors can be shown to be equal |G|2. The
secular equation of the intensity tensor is of the form:

x(x2 − x Tr Î + |G|2) = 0 (4.3)

so two other eigenvalues are:

x1,2 = 1
2 (Tr Î ±

√
(Tr Î)2 − 4|G|2). (4.4)

The intensity tensor is characterized by five independent components: three rotation angles
which orient its PAS, and two invariants, Tr Î and |G|2. These components correspond to the
five parameters determining hyperfine structure, for example Bx , By , Bz, Vzz and η.

Having diagonalized Î(s) we can easily examine the dependence of absorption of the
circularly polarized radiation as given by equation (3.1). The trace of Î is proportional to the
intensity averaged over all possible orientations of the γ vector. Solutions (4.4) indicate that
absorption depends on one parameter only, namely the ratio |G|/Tr Î. Indeed, equation (3.1)
has a particularly simple form in the PAS of Î(s):

APASζ

〈Aζ 〉 = 1 − 1

4
γ ·

[ 1 + 3
√

1 − P 2 0 0
0 1 − 3

√
1 − P 2 0

0 0 −2

]
· γ − ζ

3P

2

G

|G| · γ (4.5)

where

〈Aζ 〉 = fst
%π

2

1

3
Tr Î (4.6)

and P = 2|G|/Tr Î (note that the PAS of the Î(s) tensor in the general case is different from
the PAS of the EFG tensor (2.4)). The maximum absorption occurs when the direction of γ

coincides with the direction of G and is equal to

Amax = fst
%π

2

1

2
Tr Î(1 + P). (4.7)

It can be shown, see appendix A, that for a given transition, P is the maximum circular
polarization degree which is achieved when γ is along G. WhenP = 1, the angular distribution
given by equation (4.5) has an axial symmetry along G (is pear shaped), while for P = 0 the
distribution has axial symmetry along direction perpendicular to G (is pretzel shaped), see
figure 1.

5. Explicit formulas for the intensity tensor components

Consider an operator Ô acting on the eigenstates |eα〉. For the eigenvalues of the Hamiltonian
H , Eα , and any power n:∑

α

Enα〈eα|Ô|eα〉 =
∑
α

〈eα|ÔĤ n|eα〉 = Tr ÔĤ n. (5.1)

We see that evaluation of the left-hand sum requires summation of diagonal elements of the
operator ÔĤ n. Constructing appropriate operators Ô from two eigenstates of the ground
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Figure 1. Angular distribution of the circularly polarized
radiation in its PAS for three values of the P parameter. The
length of any vector connecting axes origin and a point on the
surface is proportional to the intensity given by equation (4.5).
The G vector is parallel to the vertical axis.
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state spin-1/2 Hamiltonian, see appendix B for details, we obtain the following results for the
intensity tensor components:

Tr Îαβ = 3

8
+ β

40λ2
α − 4qλα + (p + 4)(p + 16)− 4r

16wα
(5.2)

Gαβ = − 1

8wα
(16Φ̂2 + a1,αβΦ̂ + a0,αβ 1̂) · m (5.3)

Î
(s)
αβ = 1

32wα
(−16βsαβ ⊗ sαβ + 64βΦ̂2 − 8(2λ2

α + p + 4 + 4βλα)Φ̂ + cαβ · 1̂) (5.4)

where the following abbreviations are used:

wα = 4λ3
α + 2pλα + q

a0,αβ = 10λ2
α + 3(p + 4) + βλα(2λ

2
α + p + 16)

a1,αβ = 16λα + 2β(2λ2
α + p + 16) (5.5)

cαβ = 8λα(2λ
2
α + p + 4) + β(32λ2

α − 4qλα + p2 + 32p − 4r + 256)

sαβ = 2Φ̂ · m + (λα + 3β)m.

Let us discuss briefly these results. The tensor components depend on the hyperfine
fields and the energies of excited states. The sum of traces (5.2) over the β is equal to
(2L + 1)/(2Ie + 1) = 3/4. This result was obtained in a different way in [23].

It follows from equation (B.9) that the sum of the Gαβ vectors over all excited states
selected by β is proportional to the direction of the hyperfine magnetic field. This property
offers a possibility of measuring the direction of the hyperfine magnetic field in the case of
mixed interactions. From (5.3) we see that vector Gαβ is (i) proportional to m when magnetic
interaction is dominating, (ii) proportional to m when the hyperfine magnetic field is acting
along the PAS of the EFG tensor and (iii) a pseudovector, like m.

The first term in (5.4) represents the nondiagonal contribution to the symmetric part of
the intensity tensor, while the other three are diagonal in the PAS of the EFG. An expression
for the trace of the matrix (5.4) should be the same as equation (5.2). Indeed, we notice that
the trace of the tensor product in (5.4) is equal to the scalar product sαβ · sαβ , the trace of Φ̂2

is equal to −3/4(p + 10) and the trace of the third term in (5.4) vanishes. As a result, the
summation all of the contributions produces equation (5.2).

6. Applications

6.1. Solution of the ambiguity problem

Below we present theoretical considerations which show the possibility of measuring all
parameters appearing in the Hamiltonian (2.1).

It follows from equation (3.1) that the intensities measured with opposite circular
polarizations will differ by a value proportional to the product Gαβ · γ. Further on it is
clear that performing measurements in three perpendicular directions, say ei , in any Cartesian
frame, one can measure three scalar products Gαβ · et , t = x, y, z, in that system. In this
way all components of the vector Gαβ , thus also |Gαβ |, can be measured. The latter cannot be
expressed by p, q and r only, and contains the term proportional to the third power of R when
expanded in R, see equation (B.13).

From measured excited energies λi from line positions the p, q and r parameters are
obtained. Having additionally |Gαβ | one can find the invariantR3(1−η2) from equation (B.13).
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It is described by a rather complicated expression:

R3(1 − η2) = 1

64

(
1024w2

α|Gαβ |2 −
3∑
k=0

ak,αβλ
k
α

)
[32λα − q + 4β(2λ2

α + p + 16)]−1 (6.1)

where coefficients ak,αβ are given in appendix B. Another invariant, which is a function of R
and η, equation (2.3), can be found from the line positions:

R2

(
1 +

η2

3

)
= −1

2
(p + 10). (6.2)

Equations (6.1) and (6.2) can be solved with respect to the two variables, R and η, in a way
analogous to the one presented in [35]. The explicit results reads:

η =
√

3 tan
arccos Iη

3
(6.3)

R = (sign Iη)

√
−p − 10

2
cos

arccos Iη
3

(6.4)

where

Iη =
√

2

32(−p − 10)3/2

(
1024w2

α|Gαβ |2 −
3∑
k=0

ak,αβλ
k
α

)
[32λα − q + 4β(2λ2

α + p + 16)]−1.

(6.5)

Having values of R and η, polar angles of the m vector in the PAS of the EFG can be found
using explicit expressions for the coefficients of the secular equation (2.2)

cos2 θ = (p + 16)2 + 64R2 − 4qR − 4r

16R2(9 − η2)
(6.6)

cos 2ϕ = 1

η

3p2 + 72p − 12r + 2qR(3 − η2) + 528

(p + 4)2 − 128R2 − 4qR − 4r
. (6.7)

Equations (6.3)–(6.7) present solutions to the ambiguity problem arising from the
determination of four quantities (R, η, θ ,ϕ) from four energy levels constrained by the condition
that its sum is equal to zero. We see that it is crucial to carry out precise measurement of the
length |Gαβ |, or the maximal polarization degree, or the invariantCxx +Cyy +Czz, as discussed
in section 4. It follows from equation (6.1) that such precise determination of |Gαβ | requires
measurements with precision high enough to detect the terms which are of the order of R3.
It is interesting to note that the parameter P , characteristic for measurements with polarized
radiation, can be obtained from the measurements of the symmetric part of the intensity tensor
with an unpolarized beam.

Equations (6.6) and (6.7) still leave some ambiguity. Namely, there are eight possible
orientations of vector m in the PAS of the EFG tensor, which are characterized by the same
values of cos2 θ and cos 2ϕ. This ambiguity can only be removed by finding the orientation
of the vector m and the orientation of the PAS of the EFG. As discussed in section 5, the
orientation of the hyperfine magnetic field can be found in the MCPMS experiment [44] from
the sum of Gαβ vectors over excited states. The orientation of PAS of the EFG can be found
from equation (B.16). The weighted sum of the symmetric intensity tensor components over
all states is proportional to the EFG. Thus using the procedure described already in [34], from
the measured anisotropy of the line intensities weighted by their positions, the orientation of
the EFG tensor can be found.
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6.2. Shape of the Mössbauer spectra

6.2.1. Single site, arbitrary orientation. For magnetic interaction larger than the quadrupole
one and energy order so that λ1 < λ2 < λ3 < λ4, one can introduce the frequently used
absorption line abbreviation [18, 19, 21] by integers 1, 2, . . . , 8. Lines 1 to 6 form a set known
as a Zeeman sextet. Lines 7 and 8 correspond to the forbidden transitions in the case of pure
magnetic interactions. The transition indices α and β for 57Fe ascribed to subsequent lines are
given in table 1. Absorption lines with indices i, i = 1–8 are located on the velocity scale at
vi :

vi = B

2
(γ3/2λα − βγ1/2) + δ (6.8)

where γ1/2 = g1/2µNc/Eγ = 0.118 821 mm s−1 T−1 and γ3/2 = g3/2µNc/Eγ
= −0.0678 mm s−1 T−1 [47]. Parameter δ is the isomer shift and B the hyperfine magnetic
field. Indices α and β have to be taken from the ith column of table 1. The line intensity for
an arbitrary orientation of γ and m vectors with respect to the principal axes of the EFG is
given by equation (3.1).

Table 1. Indices α and β ascribed to the consecutive absorption lines for the case of
λ1 < λ2 < λ3 < λ4.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

α 4 3 2 3 2 1 1 4
β +1 +1 +1 −1 −1 −1 +1 −1

6.2.2. Powdered absorber. In the case of powdered absorber, strictly speaking a randomly
oriented sample, the line intensity is proportional to the trace of the intensity tensor.

Aαβ = fst
%π

2

1

3
Tr Îαβ. (6.9)

From the solution presented in [29] it follows that reduced energies can be expressed by
p, q and r parameters. These three parameters are functions of five hyperfine field parameters
of the I = 3/2 Hamiltonian (2.1). Thus from the line positions one can obtain no more than
the parameters p, q and r . The intensities themselves observed on powdered absorber bring
also nothing more since they depend explicitly on the energies, and p, q and r only.

6.2.3. In field measurements on a single crystal. Circularly polarized radiation is used
frequently in a geometry in which external magnetic field is parallel or antiparallel to the
radiation direction. In such a case, the expression for the line intensities consists of terms
m · Î

(s)
αβ · m and Gαβ · m which are equal to:

m · Î
(s)
αβ · m = 1

128wα
[β(64λ2

α + 8λαq + 8(p + 4)(p + 16)− q2 − 32r)

+64λ3
α + 4λ2

αq + 32λα(p − 8) + 2q(p + 28)] (6.10)

and

Gαβ · m = 1

64wα
[β(2λ2

α + p + 16)(−8λα + q)− 80λ2
α + 8λαq − 2p2 − 40p + 8r − 128]

(6.11)
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respectively. Because both expressions (6.10) and (6.11) are constructed from p, q and r
parameters only, even in the case of a single crystal sample, where only a single site is present,
neither the intensity analysis of a single measurement of unpolarized nor circularly polarized
radiation emitted parallel/antiparallel to the hyperfine magnetic field can guarantee solution of
the ambiguity problem.

Finally, for a typical case when the hyperfine magnetic field is parallel to the direction of
the beam, i.e. γ = m, one obtains from equation (3.1) an explicit formula for the line intensity:

Aαβζ = fst
%π

2

1

256wα
[2(2λ2

α + p + 4)(32λα − q) + β(256λ2
α − 40qλα + q2)

+8ζ(40λ2
α − 4qλα + p2 + 20p − 4r + 64) + 4ζβ(2λ2

α + p + 16)(8λa − q)].

(6.12)

6.3. Rζv symmetry of the Mössbauer spectra

Let us consider the spectra which were simulated in paper [43] for the case of mixed hyperfine
interactions and the measurements by MCPMS. The spectra exhibit, see figures 1(a) and (b)
in [43], a mirror symmetry with respect to the velocity scale in the case when polarization is
changed from the left to the right handed and the sign of the EFG is changed as well. More
formally, let us consider that the Mössbauer atoms reside at two sites. Assume that only the
sign of the EFG is different at these sites. The spectral lines attributed to the sites are measured
with two opposite polarizations and the Mössbauer spectra Aζ (R,B, v) and A−ζ (−R,B, v),
respectively, where v is the Doppler velocity, are obtained. It was shown in [43] that when the
hyperfine magnetic field B is reversed

Aζ (R,B, v) = A−ζ (R,−B, v) (6.13)

which follows simply from the time invariance symmetry. A similar reason explains also
another relationship, namely:

Aζ (R,B, v) = A−ζ (−R,B,−v). (6.14)

Equation (6.14) requires detailed elucidation. First, let us examine the secular equation (2.2)
and its roots, λα . We see that the change of sign ofR in the Hamiltonian results in the change of
sign of q in equation (2.2). Thus, from the known relations between the roots of the polynomial
and its coefficients we conclude that change of R in the Hamiltonian results in a new set of
eigenvalues −λα . After that, having the explicit formulas for the intensity tensor components,
one can easily examine that equations for the trace and for the Î

(s)
αβ remain unchanged and

Gα±1 changes sign when both R, and β, change sign. Thus we have:

Î
(s)
αβ = Î

(s)
α∗−β

Ĝαβ = −Gα∗−β
(6.15)

where the star superscript has the following meaning: λα∗ = −λα . Inspection of equation (6.8)
shows that vi − δ will change its sign when the signs of λα and the index β are changed
simultaneously. Thus, we see that equations (6.13) and (6.14) are generally valid. They
may be applied in the investigations of amorphous materials in testing the hypothesis about
symmetry of the distribution of the EFG tensor components. If the distribution of the Vzz is
an even function, then under an applied external magnetic field one has to observe symmetries
given by equations (6.13) and (6.14). To our knowledge such an experiment has not been
performed so far.
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7. Conclusions

The explicit form of the intensity tensor has been obtained, see equations (5.2) and (5.4). In the
case of a single site and pure transition in the presence of mixed interactions, the measurements
of the antisymmetric part of the intensity tensor—Gαβ vectors—can be realized with the aid
of a circularly polarized source. The resultant vector of the sum of Gαβ over excited states
is directed along the hyperfine magnetic field. Knowledge of the Gαβ vector and positions
of the excited levels allows unique determination of R, η, θ and ϕ. The measurements of
intensities require precision better than R3 if the quadrupole interaction is small with respect
to the magnetic one. The length of the Gαβ vector can be measured in two other ways:
as a maximal circular polarization degree or as an invariant of the symmetric part of the
intensity tensor in standard measurements. An analytical expression for the line intensity of
the powdered absorber is given in equation (6.9) and the ‘mirror symmetry’ of the spectra
present in MCPMS experiments has been explained as a consequence of the time invariance
symmetry.
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Appendix A

Let us examine the physical meaning of P . The probability of absorption of the left/right-
handed polarized photon is equal to the ζ component of the polarization vector:

Pζ = Tr(ρσζ ) where σζ =
[

1 0
0 −1

]
(A.1)

and ρ is the density matrix of the photon for given transition [40, 42]. In the considered case
the diagonal elements of the matrix ρ are equal to the diagonal elements of the matrix ρ given
already in [43]. After simplifications we obtain for the photon direction along γ

Pζ = 2G · γ

Tr Î − γIγT
. (A.2)

When γ and G directions coincide, P achieves an extremal value and is proportional to the
ratio of the invariants G and Tr(I ):

P = 2|G|
Tr Î

. (A.3)

Appendix B

From the construction of the intensity tensor, equation (3.2), its components are given by a
bilinear form with respect to the excited state. Thus the trace can be written as:

Tr Îαβ = 〈eα|T̂ β |eα〉 (B.1)

where T̂ β is a Hermitian operator acting in the four-dimensional space. Index β runs over two
values: β = +1 corresponding to the higher energy ground state and β = −1 to the lower
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energy one. An explicit form of the T̂ β operator in the |Ie,me〉 basis is:

T̂ β = 1

2
1̂ +

β

4




−(3c2 − 1) −√
3sc e−iϕ 0 0

−√
3sc eiϕ −c2 −2sc e−iϕ 0
0 −2sc eiϕ −s2 −√

3sc e−iϕ

0 0 −√
3sc eiϕ −(3s2 − 1)


 . (B.2)

The symbols s and c are equal to sin θ/2 and cos θ/2, respectively, and (θ, ϕ) denote polar
angles of m, as in section 2. Using equation (5.1) for Ô = T̂ β and n = 0, 1, 2, 3 and
expressing functions of the angles θ and ϕ by coefficients of the secular equation (2.2), one
arrives at the following linear problem for Tr Îαβ :∑

α

Tr Îαβ = 3

2
(B.3)

∑
α

λα Tr Îαβ = β
5

2
(B.4)

∑
α

λ2
α Tr Îαβ = −1

4
(3p + βq) (B.5)

∑
α

λ3
α Tr Îαβ = 1

16
(−18q + β(64 − 20p + p2 − 4r)). (B.6)

The solution of the above set contains powers of energies higher than three. Each value
λnα , n > 3 can be reduced to the polynomial of the (n − 2)th order by applying the secular
equation (2.2), namely

λnα = λn−4
α (−pλ2

α − qλα − r) (B.7)

which results in an explicit expression for the trace, given by equation (5.2).
Similarly, component Gtab of the vector Gαβ , where t = x, y, z, is in bilinear form with

respect to the both excited and ground states. Thus the component can be regarded as

Gtαβ = 〈eα|Ĝβt |eα〉. (B.8)

Replacing the Ô operator in (5.1) by Ĝβt one arrives at another linear problem:∑
α

Gαβ = −1

4
βm (B.9)

∑
α

λαGαβ = −1

4
[5 · 1̂ + 2βΦ̂]m (B.10)

∑
α

λ2
αGαβ = −1

8
[β(16 − p) · 1̂ + 16Φ̂]m (B.11)

∑
α

λ3
αGαβ = 1

8
[(7p − 12 + 2βq) · 1̂ − 2β(16 − p)Φ̂ − 16Φ̂ · Φ̂]m. (B.12)

Solution of (B.9)–(B.12) results in equation (5.3). The explicit expression for the scalar |Gαβ |2
reads:

|Gαβ |2 = 1

1024w2
α

( 3∑
k=0

ak,αβλ
k
α + 64(1 − η2)R3(32λα − q + 4β(2λ2

α + p + 16))

)
(B.13)

where

a0,αβ = (p2 + 20p + 64)2 − 8r(p2 + 20p − 2r + 392) + 12βq(p2 + 32p + 12r + 256)

a1,αβ = −8q(p2 + 8p − 4r + 272) + 24β(p + 4)(p + 8)(p + 16) + 16β(9q2 − 6pr − 136r)

a2,αβ = 16(14p2 + q2 + 32p − 56r + 704) + 32βq(3p − 44) (B.14)

a3,αβ = −640q + 16β(3p2 + 16p − 12r + 416).
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Similar calculations for Î
(s)
αβ yield:∑

α

Î
(s)
αβ = 1

2
· 1̂ (B.15)

∑
α

Î
(s)
αβ λα = β1̂ − 1

2
Φ̂ − β

1

2
F̂0 (B.16)

∑
α

Î
(s)
αβ λ

2
α = 1

8
(8 − βq − 2p) · 1̂ − βΦ̂ − 3F̂0 − βF̂1 (B.17)

∑
α

Î
(s)
αβ λ

3
α = 1

32
(β(p2 + 162 − 4r)− 16q) · 1̂ +

1

4
(p − 4)Φ̂ + 2βΦ̂2

− 1

2
β(9 − p)F̂0 − 3F̂1 − 2βF̂2 (B.18)

where F̂1 are symmetric tensors defined as tensor products of vectors:

F̂0 = m ⊗ m

F̂1 = m ⊗ Φ̂ · m + Φ̂ · m ⊗ m (B.19)

F̂2 = Φ̂ · m ⊗ Φ̂ · m.

From equations (B.15)–(B.18) the symmetric part of the intensity tensor (5.4) is obtained.
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[29] Häggström L 1974 Report UUIP-851, Uppsala
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